Spedizione con corriere espresso GLS a prezzi stracciati: gratuita con 90 € di spesa, altrimenti a 1, 2 o 3 € in base all'importo dell'ordine!

Algebra lineare e geometria. 2018 di Schlesinger Enrico

Nostro prezzo € 45,60 € 48,00 -5%
Disponibilità: Immediata

Quantità
Disponibile anche usato a € 28,80 Acquista usato
Descrizione Autore: Schlesinger Enrico
Editore: Zanichelli
Data di Pubblicazione: 2017
Edizione: 2
ISBN: 9788808520692
Pagine: 496


Le applicazioni dell'algebra lineare all'ingegneria e alle altre scienze si stanno moltiplicando con il crescere delle capacità computazionali dei calcolatori, che rendono possibile in tempi economicamente accettabili la soluzione di sistemi lineari con centinaia di migliaia di incognite. All'ingegnere e allo scienziato dei nostri giorni è dunque richiesta una conoscenza sempre più approfondita di questa materia. Algebra lineare e geometria è un corso di base per le facoltà scientifiche, nato con un duplice scopo: risultare di facile lettura per gli studenti del primo anno, ricco di esempi ed esercizi che motivino lo svolgimento della teoria e ne illustrino le applicazioni; ma anche essere completo e rigoroso dal punto di vista matematico, per servire come testo di riferimento anche nei successivi anni di studio. Per questo il libro contiene alcuni argomenti che solitamente non sono trattati in un corso del primo anno, quali la forma canonica di Jordan, le fattorizzazioni LU e di Cholesky, la forma canonica di una matrice normale reale, la decomposizione SVD; naturalmente, lo studio degli argomenti più avanzati non è richiesto per la comprensione della parte più elementare del libro. In questa seconda edizione il capitolo sugli spazi vettoriali è stato accorpato con quello sulle applicazioni lineari; nella nuova trattazione la teoria ha uno sviluppo più naturale e sintetico, che dovrebbe facilitarne l'utilizzo per i corsi di algebra lineare con un esiguo numero di ore di lezione. Altre modifiche sono la riscrittura del testo sulla formula esplicita del determinante, la nuova presentazione delle proiezioni ortogonali nel capitolo sugli spazi euclidei e, nell'ultimo capitolo, l'introduzione degli operatori autoaggiunti che consentono una dimostrazione più concettuale del teorema spettrale e dei successivi risultati.